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This paper proposes a computational procedure based on the Trefftz method for
the solution of non-linear Poisson problems. The problem is solved by finding an ap-
proximate particular solution to the Poisson equation and using boundary collocation
to solve the resulting Laplace equation. This method results in a global collocation
and hence eliminates the need for discretization of the domain in both two and three
dimensions. The solution procedure proposed earlier in the literature based upon
the above method has been reformulated for increased computational efficiency. A
quasi-Newton iteration method along with a new heuristic for source point location
is used for efficient convergence of the numerical scheme. The efficacy of the new
formulation has been demonstrated for two classes of problems, viz. the thermal
explosion problem and the diffusion–reaction problem in a partially wetted catalyst
pellet. A brief error analysis of the method, as well as future research directions, is
presented. c© 1999 Academic Press
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ular solution; non-linear Poisson problem; radial basis functions; matrix of particular
solutions.

1. INTRODUCTION

Non-linear Poisson equations of the type∇2u= f (x, u), wherex is the position andu the
dependent variable, are encountered in numerous problems in heat conduction, mass trans-
fer, and flow through porous media. The solution to such problems is usually required in
non-regular two- and three-dimensional geometries with non-uniform boundary conditions.
The use of conventional numerical procedures, viz. finite differences, finite elements, etc.,
to solve these problems necessitates high levels of discretization, resulting in large computer
time. Hence in recent years, there has been considerable interest to develop “mesh-free”
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methods, which do not involve extensive discretization of the domain of interest. Most
common among such methods is the dual reciprocity boundary element method (DRBEM)
[1, 2]. In this method, the weighted residual formulation of the governing differential equa-
tion is reduced to a set of line/surface integrals over the boundary in two and three di-
mensions, respectively, using the Green–Gauss identity. The method is closely related to
the boundary integral method and differs only in the fact that in DRBEM, one transfers
non-homogenous terms involved to equivalent boundary terms.

One of the drawbacks of boundary integral methods (and DRBEM) is that the formulation
involves the evaluation of singular or near-singular integrals [3, 4]. The accurate evaluation
of these singular/near-singular integrals can be computationally expensive due to the large
numbers of quadrature points required in the vicinity of the singularity. This is compounded
by the fact that large numbers of boundary nodes are necessary if lower order polynomial
approximations are used for interpolation. One has to then trade off between the accuracy
of the solution and the computational time especially for irregular geometries. On the one
hand, inappropriate choice of discretization can lead to large errors in the solution, and
on the other, a large amount of discretization causes slow convergence of the solution,
especially for non-linear problems [1, 4].

To circumvent the problem of having to evaluate singular integrals, a class of boundary
collocation methods classified under the generic name “Trefftz method” [5] can be used.
Here the solution is represented using layer potentials on non-physical surfaces, thereby
circumventing the need to evaluate any singular integrals. By adopting such a method, one
also avoids the problem of complicated surface meshing required for the traditional BEM in
three dimensions. In the Trefftz method, the solution is expanded in terms of basis functions
satisfying the internal region exactly, and the boundary conditions are satisfied by collocation
on the boundary only. Depending upon the kind of basis functions employed, one can classify
it as either the T-Trefftz or the F-Trefftz method. Prior research on the implementation of
the Trefftz method has focused mainly on the Laplace and biharmonic equations [6–16].
These studies have demonstrated the efficacy of the Trefftz method for the solution of
the Laplace and biharmonic equations. These partial differential equations are linear and
involve no non-homogenous terms. For the Poisson equation, however, a modification of
the solution procedure is needed. To handle the Poisson terms, the problem is split into
two parts, a homogenous part satisfying the Laplace equation and a particular solution,
which is approximated over the domain. Thus a combination of the particular solution
method with the Trefftz method, called the “Particular solution Trefftz method,” offers
the possibility of a computational technique which involves neither domain nor boundary
discretization. Such a method would offer considerable computational advantage, especially
for three-dimensional problems in non-regular geometries. The solution of the Poisson-type
equations using this method has recently been studied by Chen and Golberget al. [17–20].
The method was tested on specific forms of the forcing function (non-homogenous term)
f , viz. (i) f is a function of position only and (ii) the Frank–Kamenettski equation for
explosion and quenching problems, with promising results. However, the studies were
restricted to regular geometries, with only Dirichlet boundary conditions being imposed,
and no extensive parametric studies were reported. One therefore needs to investigate the
method in detail for more complex problems in non-regular geometries with mixed boundary
conditions. Furthermore, for the method to be viable as an alternative computational tool, the
development of efficient convergence schemes is warranted. The primary goal of this paper
is to present a new computational formulation of the Trefftz method for non-linear Poisson
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problems, with improved convergence properties compared to a prior implementation of
the method. The method’s efficacy is demonstrated for a number of mixed boundary value
problems.

The layout of the paper is as follows. In Section 2.1, we review the classical T- and
F-Trefftz methods for the Laplace and linear Poisson problems. In Sections 2.2 and 2.3,
we present the particular solution Trefftz method along with a prior implementation of the
method. In Sections 2.4–2.6, we present the solution methodology adopted by us and its
advantages, followed by a new heuristic criterion for location of source points in the scheme
described in Section 2.8. Some illustrative examples are presented in Section 3, and an error
analysis of the method is given in Section 4. In Sections 5 and 6, the findings are critically
evaluated along with the scope for improvements and future work.

2. THE TREFFTZ METHOD FOR THE POISSON EQUATION

Consider the Poisson equation to be solved over a domainÄ in R2 or R3 with enclosing
boundary0,

∇2u = f (x̄, u) inÄ, (1)

wherex̄ represents the coordinates of the point

x̄ = (x, y) in R2

x̄ = (x, y, z) in R3,

with mixed boundary conditions,

Dirichlet:u = ū over01 (2a)

Neumann:
∂u

∂n
= p = p̄ over02, (2b)

where01+02=0.
The solution difficulty in using boundary methods arises due to the presence of a non-

homogenous termf in Eq. (1). However, by finding an approximate particular solution, the
problem can be reduced to the solution of the Laplace equation. This is elaborated upon in
Section 2.2. We now briefly review the Trefftz method for the Laplace equation.

2.1. The Classical Trefftz Method for Laplace and Linear Poisson Problems

When the forcing functionf = 0, Eq. (1) reduces to the Laplace equation, and when
f =±λ2u, one has a linear Poisson problem (diffusion–reaction/Helmholtz equation, re-
spectively). For such problems, the solution in the interior can be represented exactly by
means of T-complete functions or the fundamental solution to the differential operator
[8, 10, 11, 18]. The method is called T- or F-Trefftz depending on whether one uses the
T-complete functions or the fundamental solution to the operator, respectively [5, 21]. In
order to illustrate the procedure consider the Laplace equation,

∇2v = 0,
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where the dependent variable is now changed tov for convenience of notation in later
sections.

The solution can be expressed as

v = a0+
n∑

i=1

ai Gi , (3)

where the functionsGi for the F-Trefftz method are the solutions to

∇2Gi = −δ(ri ) i = 1, n (4)

and are given by

Gi = −ln(ri ) i = 1, n. (5)

The distanceri denotes the distance between thei th hypothetical source point of unit
strength and any arbitrary field point on the boundary or the interior of the domain. The
functionsGi are made non-singular throughout the interior of the domain by locating the
source points outside the domain of consideration. The F-Trefftz method is also referred to
as the method of fundamental solutions [4, 22], charge simulation method [23], or singular-
ity method [24]. For the T-Trefftz method, the functionsGi are called T-complete functions
and the analytical expressions are given in Refs. [7, 13, 21].

Since the solution in the interior is satisfied exactly byv, one now needs to determine the
parametersa0 throughan so as to satisfy the imposed boundary conditions. These unknown
parametersa0 throughan can be evaluated by two methods, viz. collocation and Galerkin
methods, as outlined below.

Collocation. Since the layer potential on the boundary is only an approximation to the
exact solution, the difference between the two, the boundary residualR is given by

R1 = v − v̄ 6= 0 on01

R2 = p− p̄ 6= 0 on02.

In the collocation formulation, one choosesn+ 1 collocation points on the domain boundary
and the residual of the error is set to zero, i.e.,R1= R2= 0, at each collocation point. When
the number of unknown parametersai (i = 0, 1, . . . ,n) equals the number of collocation
points, one has a set ofn+ 1 linear equations for a Dirichlet problem. When the number
of collocation points exceeds the number of unknowns, one uses the least square method to
minimize the sum of the boundary errors.

Galerkin method. In the Galerkin method the weighted residual is forced to zero with
the weighting function chosen to be same as the functionsGi . Thus one obtains∫

01

Gi (v − v̄)+
∫
02

Gi

(
∂v

∂n
− p̄

)
= 0.

We restrict ourselves to the collocation formulation in this paper. Thus, the method leads
to a grid-free solution scheme, with the only limitation that the optimal location of source
points is unknown a priori, the details of which will be elaborated upon later.
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2.2. The Particular Solution Trefftz Method for Non-linear Poisson Problems

For a non-linear Poisson problem, the T-complete functions (T-Trefftz)/fundamental so-
lution (F-Trefftz) cannot be found analytically for a general case. Hence, one resorts to the
method of particular solutions, similar to the one frequently used to solve ordinary differ-
ential equation in one dimension. In this paper, we restrict ourselves to the analysis of the
F-Trefftz method along with the particular solution method.

Here the solutionu to the differential equation is split up into a homogenous partv and
a particular solutionw, such that

u = v + w. (6)

The particular solutionw satisfies the equation

∇2w = f in Ä (7)

but need not satisfy any set of boundary conditions. The problem now is to find the par-
ticular solutionw. The exact particular solution to the problem can be found only for a
limited number of cases. In general, one has to find an approximate particular solution
to the problem [25]. One method for obtaining the approximate particular solution is by
quasi-Monte Carlo integration [19]. This method is rather cumbersome, and evaluation of
the approximate particular solution requires a large number of quasi-random points to be
generated. A more direct method is to interpolate the forcing functionf using a set of basis
functions over the domain. Nowf is expressed as

f =
nt∑

k=1

φkαk, (8)

wherent is the number of interpolation points,φk represents the basis functions used for
interpolation, andαk’s are the set of interpolating coefficients. Any set of basis functions
can be used for interpolation, but radial basis functions have been found to be most suitable
[26]. The use of radial basis functions to approximate the forcing functionf is discussed in
Section 2.5. The particular solutionw for the problem is then found by integrating the
equation

∇2w =
nt∑

k=1

φkαk. (9)

If now one defines a set of functionsψk satisfying

∇2ψk = φk, (10)

then the approximate particular solution is given by

w =
nt∑

k=1

ψkαk. (11)

Explicit formulae forψk can be found in many cases, corresponding to specific forms of
φk, and these are presented in Section 2.5.
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Having found the approximate particular solution one now proceeds to solve thev prob-
lem using the classical Trefftz method. The homogenous partv now satisfies the Laplace
equation,

∇2v = 0 inÄ, (12)

with a modified set of boundary conditions,

v = ū− w over01
(13)

∂v

∂n
= p̄− ∂w

∂n
over02.

As outlined in Section 2.1,v is expressed as a linear combination of functionsGi , Eq. (3),
which satisfy the Laplace equation exactly in the interior of the domain. The boundary
conditions are now specified for thev problem as in Eq. (13).

The composite solution can now be represented as

u = v + w = a0+
n∑

i=1

ai Gi +
nt∑

k=1

ψkαk. (14)

The unknowns are the parametersa0 throughan and the values ofαk (for k= 1, nt). The
αk’s are in turn related to the values off at the interpolation points. Thus, whenf is
a function ofu, the unknowns are theai ’s (i = 0, 1, . . . ,n) and the values ofu at the
interpolation points. An illustrative location of the collocation points and the source points
for a simply connected domain is given in Fig. 1.

2.3. Numerical Implementation: Some Prior Attempts

We now discuss the numerical implementation of the collocation scheme described in the
previous section. This is necessary to put our solution methodology in proper perspective.
To evaluate the particular solution, one needs to determine the interpolating coefficientsαk.

FIG. 1. Collocation points and source points for the F-Trefftz method.



PARTICULAR SOLUTION TREFFTZ METHOD 245

To do so one applies the interpolation condition at all the collocation points, viz.

f j =
nt∑

k=1

φ jkαk j = 1, 2, . . . ,nt, (15)

whereφ jk ’s are the interpolating functions evaluated at thej th point.
Alternatively,

α = 8−1f, (16)

whereα is the vector of coefficients comprisingαk’s,8−1 is the inverse of matrix ofφ jk ’s,
andf is the vector off values at interpolating points. Thus theαk’s can be determined by
solving a set ofnt linear equations.

When f is a function of only the spatial variables, the values off at the collocation
points are known a priori. The calculation of the coefficientsαk does not involve any
iterative procedure, and the solution can be obtained once for all by solution of Eq. (14).
Furthermore, one only needs to collocate on the boundary to obtain the solution, and interior
points are necessary only to improve the interpolation of the forcing functionf . Thus, the
problem is fully decoupled in this case. The accuracy of the method has been demonstrated
for such cases [4].

For the case whenf is a function ofu, the solution is more involved and involves
iterative calculation, since the boundary conditions (needed to findv) are functions ofw,
whose variation over the domain is unknown. In a variation of the Picard method of iteration
implemented by Chenet al. [27] for the two-dimensional Dirichlet problem, thev problem
is solved by assumingu at the collocation points at the start of the iterations and evaluating
the particular solutionw at each level of iteration.

One then solves thev problem at the current iteration from the recurrence relation

∇2vn+1 = 0 overÄ
(17)

vn+1 = ū− wn over0,

wheren+ 1 denotes the current iteration andn the previous iteration step.
The particular solution at the previous level of iteration can be evaluated as

wn =
nt∑

k=1

ψkαk(n) over0, (18)

whereαk(n) in turn is evaluated from Eq. (15), using thef j values at thenth iteration.

2.4. Numerical Implementation Using “Matrix of Particular Solutions”

For linear/mildly non-linear problems, the modified Picard iterative scheme works well.
However, the method is very inefficient, and for strongly non-linear problems, the method
fails to converge. To improve the convergence, the problem was reformulated in the follow-
ing manner.

The dependent variableu is now directly expressed as a sum of the homogenous partv

and the particular solutionw as in Eq. (14). Furthermore, one can now express the values
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of αk as

αk =
nt∑

m=1

Ekm fm (k = 1, 2, . . . ,nt), (19)

whereEkm represents the elements of the matrix8−1, andnt represents the total number
of collocation points.

Now one can write the particular solutionw given by Eq. (11) as

w =
nt∑

k=1

ψkαk =
nt∑

k=1

ψk

nt∑
m=1

Ekm fm. (20)

Changing the order of summation,

w =
nt∑

m=1

βm fm with βm =
nt∑

k=1

ψk Ekm. (21)

Thus, the particular solution can be rewritten in terms of the function values at the nodes
rather than in terms of a set of interpolation coefficients. This is a key step in the rapid
numerical implementation of the method.

Using the above form of particular solution (Eq. (21)),u and ∂u
∂n for nodei can be written

as

ui = a0+
n∑

k=1

akGik +
nt∑

m=1

βim fm (i = 1, 2, . . . ,nt) (22)

∂u

∂n

∣∣∣∣
i

=
n∑

k=1

ak
∂Gik

∂n
+

nt∑
m=1

β ′im fm, (23)

where

β ′m =
nt∑

k=1

∂ψk

∂n
Ekm

(23a)
∂ψk

∂n
= 1

rk
[(x − xk)nx + (y− yk)ny]

∂ψk

∂rk
in 2-D,

whererk is the distance between (x, y) and (xk, yk), andnx, ny are components of the
outward normal.

One can rewrite Eq. (22) in compact matrix form as

u⇀ = a0+ G̃ a⇀ + β̃ f
⇀

,

whereu⇀ is the vector of concentration values at thent collocation points,a⇀ is the vector
of coefficientsa1 throughan, G̃ is the matrix ofGik ’s, β̃ is the matrix ofβim’s, andf

⇀

is
the vector of fi ’s. A similar vector representation can also be written for Eq. (23) at the
collocation points.

The matrixβ, called thematrix of particular solutions, offers considerable computational
advantage, which will be elucidated in Section 5. The solution is formulated as follows.
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The values ofu at thent nodes (both boundary and interior) are assembled using Eq. (22)
for a Dirichlet problem. The boundary conditions onn+ 1 boundary nodes are imposed
on each equation and one gets a system ofnt non-linear algebraic equations for a Dirichlet
problem. For a Dirichlet–Neumann (D-N) problem bothu and the specified flux∂u

∂n at the
Neumann boundaries are assembled into the global collocation matrix. In this case, the
concentrations at the flux-specified boundaries are additional unknowns in the formulation.
If nn is the number of nodes with a Neumann boundary condition, one has to solve for
nt+ nn variables with as many non-linear algebraic equations in the collocation version
of the formulation. When Robin conditions are imposed on part of a domain, one has a
convective boundary condition of the form

∂ui

∂n
= −h(ui − uo), (24)

whereh is the heat/mass transfer coefficient anduo is u of the surrounding. The equations
for theui ’s at thent collocation points are assembled along with∂ui

∂n + hui at the collocation
points on the Robin boundaries, resulting in a formulation similar to the one obtained with
the Neumann boundary conditions:

hu0 = ha0+
n∑

m=1

am

(
hGim + ∂Gim

∂n

)
+ h

nt∑
k=1

βik fk +
nt∑

k=1

β ′ik fk. (25)

Once the set of equations are assembled, they are solved using a quasi-Newton-method-
based solver for systems of non-linear algebraic equations, from the standard libraries.

2.5. Interpolation of f Using Radial Basis Functions

To approximate the forcing functionf one resorts to interpolation using basis functions
as in Eq. (8). Various types of basis functions can be used for interpolation. One chooses
the basis functionsφk to be radial basis functions, which have been found to be smooth
interpolators of multidimensional scattered data in regular and non-regular geometries
[4, 26, 28–31]. Commonly used radial basis functions are

• linearφk= 1+ rk;
• thin plate splineφk= r 2

k ln[rk];
• multiquadricφk= (c2+ r 2

k )
1/2;

hererk represents the Euclidean distance of the given point from a fixed pointk in the
domain. The main advantage of using radial basis functions is that they are independent
of the dimensionality of the problem, which lends a significant degree of versatility to the
formulation, as discussed in the next section. Once one chooses the radial basis functionφk

one has to determineψk, which is evaluated by integrating Eq. (10).
The governing equations forψk are therefore given by

1

rk

∂

∂rk

(
rk
∂ψk

∂rk

)
= φk in 2-D;

1

r 2
k

∂

∂rk

(
r 2

k

∂ψk

∂rk

)
= φk in 3-D.

Expressions for the particular solution for various basis functions are listed in Table 1.
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TABLE 1

Expressions for Particular Solutions for Various Radial Basis Functions

Dimension Radial basis functionφk Particular solutionψk

2-D 1+ rk
r 2

k

4
+ r 3

k

9

2-D r 2
k log(rk)

r 4
k log(rk)

16
− r 4

k

32

2-D r 2
k + r 3

k

r 4
k

16
+ r 5

k

25

2-D (r 2
k + c2)1/2 −c3 log{cφk+ c2}

3
+ {(r

2
k + 4c2)φk}

9

3-D (r 2
k + c2)1/2

(
5c2

24
+ r 2

k

12

)
φk+ c4[ln(rk+φk)− ln(c)]

8rk

3-D r 2
k + r 3

k

r 5
k

25
+ r 6

k

36

In our implementation, we have used Hardy’s multiquadrics in both two and three di-
mensions, since it has been shown to have exponential convergence [32].

2.6. Implementation in Three Dimensions

A unique feature of the solution methodology is that it is independent of the dimensionality
of the problem. To implement the formulation in three dimensions, one only has to replace
theGi functions with the fundamental solution to the three-dimensional potential problem
and use the approximate particular solution for the three-dimensional case.

For the method of fundamental solutions,

∇2G = −δ(r ) where∇2 = 1

r 2

∂

∂r

(
r 2 ∂

∂r

)
, (26)

which gives

Gi = 1/ri , (27)

whereri is the distance between the collocation point and thei th source point.
The particular solutionψk now satisfies

1

r 2
k

∂

∂rk

(
r 2

k

∂ψk

∂rk

)
= φk. (28)

The particular solutions for some basis functions in three dimensions are given in Table 1.
The remainder of the formulation is exactly the same as before. The use of radial basis
functions further enhances this feature, sincerk just has to be modified to

rk =
√
(x − xk)2+ (y− yk)2+ (z− zk)2. (29)

Thus by just modifyingGi andψk one can use the same numerical scheme, and hence
the same code in both two and three dimensions. This is a unique numerical feature of the
Trefftz method, which is not shared by any other numerical method.
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2.7. Test Cases

To test the efficacy of the formulation, two benchmark problems were used, viz. the
diffusion–reaction problem and the thermal explosion problem.

i. The diffusion–reaction problem.The diffusion–reaction problem is a classical prob-
lem encountered frequently in chemical reaction engineering. The governing differential
equation in this case is given by

∇2u = f (u), (30)

where f (u) is the forcing function which is generally a function of the dependent variable
u. The functionf can be of the form82un, where82 is called the Thiele parameter andn is
the order of the reaction. The parameter82 represents the ratio of the diffusional resistances
to the transport of species to the kinetic resistances on the catalytic surface. As82 increases,
the profiles in the catalyst become steeper near the boundary and for large values, say>25.0,
a boundary layer develops at the outer surface of the catalyst. Furthermore, in three-phase
systems, part of the catalyst surface can be gas covered or liquid covered, with Dirichlet–
Neumann/Robin-type boundary conditions over the perimeter/surface of the catalyst. One
thus has a Dirichlet–Neumann singularity at the intersection of the Dirichlet and Neumann
boundaries, where the normal gradients are not uniquely defined. The problem is therefore
a good test for a numerical method since one can evaluate its ability to resolve the boundary
layers and profiles near the singularities, with minimum discretization and computational
time. In chemical engineering systems, the problem has to be routinely solved to evaluate
the performance of catalyst in terms of the effectiveness factor, which is defined as

η = 1

Ä82

∫
0

p d0, (31)

whereÄ,0 are defined as earlier andp is the normal gradient at the boundary.

ii. The thermal explosion problem.The second problem considered here is the ther-
mal explosion problem. The governing equation to the problem is the Frank–Kamenettski
equation,

∇2u = −δ exp[u]. (32)

This equation is frequently encountered for determination of regimes of safe operation for
combustion and other exothermic processes. An important quantity to be determined is the
critical value of the parameterδ, δ∗, which represents the point above which no steady-state
solution exists, i.e., the system goes into runaway. For various geometries, one can estimate
the critical parameterδ∗ to ascertain the safe regimes of operation. Since the problem is
highly non-linear, it provides a good benchmark for testing numerical schemes. The results
obtained using the current formulation were corroborated with those of Chen [27] for the
thermal explosion problem with Dirichlet boundary conditions.

2.8. Source Point Location for the Method of Fundamental Solutions

As outlined in the literature [4, 33, 34], the source points which are located outside the
domain were placed on the perimeter of a circle of a chosen radius so as to achieve conver-
gence. This methodology for locating source points is satisfactory for Dirichlet problems
and Dirichlet–Neumann problems with no strong singularities. However, for the cases when
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a strong Dirichlet–Neumann singularity exists, a uniform distribution of the source points
results in poor convergence or large errors near the singularity. The solutions converged
only for a limited number of cases, viz. with low Thiele parameters8. To improve the
convergence of the scheme we have devised the following heuristic. Here the sources were
distributed non-uniformly such that the source points are closer to the Neumann boundaries
and further away from the Dirichlet boundaries. This distribution of source points vastly
improves the convergence of the method for problems with strong singularities. Such a
heuristic can also be used as a starting solution for the source point optimization using least
square collocation as outlined in [8], to obtain efficient convergence along with minimal
error.

3. RESULTS

The F-Trefftz method was tested for a number of cases in two and three dimensions, and
the efficacy of the method will be shown for the benchmark problems discussed earlier. The
radial basis function used for interpolation in both 2-D and 3-D was Hardy’s multiquadrics
[28], for which

φk =
(
c2+ r 2

k

)1/2
.

The value of the shift parameterc should be as large as possible for accurate interpolation.
However, the convergence of the numerical schemes deteriorates asc increases due to ill-
conditioning of the interpolation matrix8. The value ofc was chosen to be equal to the
minimum distance between grid points for each case, using which the scheme converged
for all the cases considered. The particular solutions for this case,ψk in 2-D and 3-D, are
listed in Table 1. The geometries considered in 2-D were a square slab of unit side and a
circle of unit radius.

A number of cases were studied to demonstrate the accuracy of the method. In Cases 1
and 2, the results presented are for those cases where the source points were uniformly dis-
tributed along the perimeter of a circle for 2-D problems. In Cases 3–5, the results presented
are for a non-uniform distribution of sources outside the domain. This configuration was
used for problems for which convergence was not obtained using the uniform distribution
of source points. Case 6 illustrates the method for Robin conditions. Cases 7 and 8 illustrate
the method for three-dimensional problems with uniform and mixed boundary conditions,
respectively.

The convergence of the procedure depends on the placement of the source points which
are not known a priori. Hence the location of the source points was varied over a range until
convergence was obtained. The criterion for convergence was such that the sum of boundary
errors was less than 10−3. For all the cases under consideration, the order of convergence
for the quasi-Newton method was for the residual to beO(10−4).

For comparison purposes, in all the two-dimensional cases, the constant element dual
reciprocity boundary element method (DRM) with the same number of nodes as in the
method of fundamental solutions was used. DRM has been shown to be an accurate method
for the numerical solution of non-linear Poisson problems with boundary singularities
[1, 2, 30]. The method of fundamental solutions/F-Trefftz method is referred to as MFS in
Tables 2–15 for brevity.

Case 1: Dirichlet boundary conditions, two-dimensional domain.The geometries con-
sidered are the unit circle and a square slab of side= 1.0. The circle was centered at
(0, 0), and 16 boundary nodes and 49 interior nodes were used to discretize the circle.
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FIG. 2. Collocation point locations for square and unit circle in the base case.

This is illustrated in Fig. 2. Dirichlet boundary conditions were imposed along the perime-
ter of the circle (r = 1.0), which is maintained atu= 1.0.

The corners for the square slab are located at (±0.5,±0.5). Thirty-two boundary nodes
and 81 interior nodes were used for discretization of the domain. Dirichlet boundary con-
ditions were imposed on all four sides of the square, which are maintained atu= 1.0. At
the corners of the square, the normal gradients are not defined uniquely. One approach to
circumventing this issue is to use double collocation points at the corners. Here the normal
gradients are defined corresponding to each side adjoining the corner. Another approach is
to have collocation points which are shifted a small distance away from the corners. The
latter method of solution was adopted, which is illustrated in Fig. 2. This figure also shows
the base case, and the effect of varying levels of discretization is discussed in Section 4.2.

The problems tested were the diffusion–reaction problem and the thermal explosion
problem. The test cases for the former are for a first-order and second-order reaction with
a Thiele parameter (82) of 25. For the thermal explosion problem, the critical value of the
parameterδ, δ∗ was determined by running the code repetitively with small increments inδ,
until the program failed to converge, keeping the source radius fixed (r = 10.0). This source
radius was used to corroborate our results with those of Chen [27].

The results are presented in Tables 2–4, along with a comparison with DRM, from which
the accuracy of the method is evident.

Case 2: Dirichlet–Neumann problem, two-dimensional domain.A partially wetted/in-
sulated slab/circle withu= 1.0 imposed as the Dirchlet condition andp= 0 as the Neumann
boundary condition was considered. In both cases the extent of wetting was 50%. As in
Case 1, the circle is of unit radius and is centered at the origin. For the circle, the first
quadrant{θ = [0, π/2]} and the third quadrant{θ = [π, 3π/2]} are insulated (p= 0), while
the other two quadrants{θ = [π/2, π ]; θ = [3π/2, 2π ]} are maintained atu= 1.0. The
same discretization (16 boundary and 49 interior nodes) was employed as in Case 1 and
the situation is illustrated in Fig. 3. The square slab is of side= 1.0, with corners located at
(±0.5,±0.5) as before. The faces atx=−0.5, x= 0.5 are maintained atu= 1.0, and the
faces aty=−0.5 andy= 0.5 are at insulated (p= 0) . As in Case 1, 32 boundary and
81 interior nodes were used to discretize the domain. The collocation points at the corners
were placed in the same manner as in Case 1. From Tables 5 and 6, the comparison is good,
illustrating the adequacy of the uniform source distribution for this case.
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TABLE 2

MFS for First-Order Reaction f = 25.0u, Dirichlet Boundary Conditions

Geometry u (origin) (MFS) u (origin) (DRM) Source radius (MFS)

Unit circle 0.0359 0.039 1.9
Square of side= 1.0 0.2572 0.2564 1.5

TABLE 3

MFS for Second-Order Reactionf = 25.0u2, Dirichlet Boundary Conditions

Geometry u (origin) (MFS) u (origin) (DRM) Source radius (MFS)

Unit circle 0.2157 0.2203 1.9
Square of side= 1.0 0.4352 0.4352 2.1

TABLE 4

MFS for Thermal Explosion Problem, f =−δ exp(u) Dirichlet

Boundary Conditions

Geometry δ∗ (MFS) δ∗ (anal.) Source radius

Unit circle 2.04 2.0 10.0
Square of side= 1.0 1.71 1.7 10.0

TABLE 5

MFS for a Square Slab of Unit Dimensions (D-N) Conditions

Kinetics u (origin) (MFS) u (origin) (DRM) Source radius

First-order f = 25u 0.1729 0.1692 2.3
Second-orderf = 25u2 0.3726 0.3689 1.9

TABLE 6

MFS for a Circle of Unit Radius (D-N Conditions)

Kinetics u (origin) (MFS) u (origin) (DRM) Source radius

First-order f = 25u 0.02117 0.022 2.1
Second-orderf = 25u2 0.1838 0.188 3.0
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FIG. 3. Configurations for Dirichlet–Neumann problems (Case 2).

Case 3: D-N conditions 50% wetted/insulated, alternate configuration.In this case we
consider a square slab of unit side which is wetted/insulated on opposite corners, as shown
in Fig. 4. Sixteen nodes were used to discretize the boundary and 64 for the interior of
the domain. The corner nodes were placed in the same manner as before. Though this
problem has the same fraction of the perimeter insulated, the singularities are much more
pronounced than in Case 2, since a D-N junction exists on each side of the square. The
fluxes at these junctions are not defined uniquely and the efficacy of a numerical method
can be demonstrated by its ability to capture the steep profiles in the vicinity of each

FIG. 4. Configuration and source location for Case 3.
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FIG. 5. Concentration profiles for Case 3 (f = 25u).

singularity, while preserving the symmetry of the problem. When the sources were located
uniformly the method converged only for small values of the Thiele modulus, and the
profiles obtained were asymmetric. To improve the convergence the sources were located
closer to the Neumann nodes, as illustrated in Fig. 4. By doing so the convergence vastly
improved, and the profiles obtained are shown in Fig. 5 for the first-order reaction. Not only
does the method now capture the steep gradients in the vicinity of the singularity, but it also
preserves the symmetry of the concentration profiles. Table 7 shows the comparison of the
MFS solution at the origin with that obtained by the dual reciprocity method, for first- and
second-order reactions.

Case 4: Motz diffusion–reaction problem.We consider a slab of side= 1.0, where three
sides of the square are insulated and half the fourth side is insulated (p= 0). The remaining
half of one side is maintained atu= 1.0. The Laplace problem, with the above boundary
conditions, is the classical Motz problem, which is a standard benchmark in numerical
analysis. Here we consider the corresponding diffusion–reaction problem. This problem is
a particularly stringent test of the efficacy of a numerical scheme owing to the predominance
of the Neumann boundaries, the asymmetry of the imposed boundary conditions, and the
strong singularity at the junction of the D-N boundary. The slab was discretized using 16
boundary nodes and 64 internal nodes. Hence, Dirichlet boundary conditions were imposed
on only two nodes. Here, too, convergence was obtained only with a non-uniform source
point distributions, as illustrated in Fig. 6. The concentration profiles are obtained are
shown in Fig. 7 for the first-order case. The comparison of the solutions obtained using
MFS and DRM are shown in Table 8. The DRM constant element code produced some
negative values of fluxes at the boundaries, indicative of the fact that MFS with non-uniform

TABLE 7

MFS for a Slab with Opposite Corners Wetted (Case 3)

Kinetics u (origin) (MFS) u (origin) (DRM) Source radius

First-order f = 25u 0.1612 0.1588 Non-uniform
Second-orderf = 25u2 0.3608 0.3567 Non-uniform
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TABLE 8

MFS for the Motz Diffusion–Reaction Problem

Kinetics u (origin) (MFS) u (origin) (DRM) Source radius

First-order f = 5u 0.255 0.251 Non-uniform
Second-orderf = 5u2 0.365 0.371 Non-uniform

FIG. 6. Configuration and source location for the Motz diffusion–reaction problem.

FIG. 7. Concentration profiles for the Motz diffusion–reaction problem (f = 5u).
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FIG. 8. Discretization and source location for Case 5.

source distribution works better at the low level of discretization. Higher order elements can
resolve the steep gradients much better in DRM [2] but at a higher cost of discretization.

Case 5: MFS for the oval of Cassini.To demonstrate the efficacy of the MFS for irregular
geometries, we consider the oval of Cassini [4], whose parametric equation is given by

x = r (θ) cos(θ)

y = r (θ) sin(θ)

r (θ) =
√

cos(2θ)+
√

1.1− sin2(2θ)

0 ≤ θ < 2π.

(33)

The geometry and discretization are shown in Fig. 8. The diffusion reaction problem was
the test problem with two cases. In one case, Dirichlet boundary conditions,u= 1.0, are
imposed all along the perimeter. In the other case, Neumann boundary conditions,p= 0.0,
are imposed along the perimeter forπ <θ <2π andu= 1.0 is imposed along the rest of
the perimeter, as illustrated in Fig. 9. The forcing functionf for both cases wasf = 5.0u.

FIG. 9. Dirichlet–Neumann configuration for the oval of Cassini.
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TABLE 9

MFS for the Oval of Cassini ( f = 5u)

Boundary conditions u (origin) (MFS) u (origin) (DRM) Source radius

Dirichlet 0.794 0.786 Non-uniform
Dirichlet–Neumann 0.559 0.573 Non-uniform

The source point location for both cases is shown in Fig. 8. For the D-N problem, half the
source points were moved closer to the Neumann boundary. Table 9 shows the comparison
of the MFS and DRM solution at the origin.

Case 6: Robin boundary conditions (2-D domain).In this case, we consider a unit circle
centered at the origin, as in Case 2. Here, part of the domain is maintained atu= 1.0, as
in Case 2. However, the remainder is exposed to the surroundings, which is atuo= 2.0.
The heat transfer coefficienth is 0.1. The discretization is the same as in Case 2, with 16
boundary nodes and 49 internal nodes. The source points were located uniformly along the
perimeter of a circle of radius 1.9. MFS and DRM solutions at the origin are compared in
Table 10.

Case 7: Sphere of unit radius (3-D), Dirichlet problem.We consider the three-
dimensional Poisson problem. The geometry considered is a sphere centered at the ori-
gin of unit radius. The sphere was discretized using 58 boundary nodes (on the surface)
and 175 internal nodes. The nodes were located on concentric spheres of decreasing radii.
Dirichlet boundary conditions were imposed on the surface of the sphere, withu= 1.0
at r = 1.0. For comparison, a 1-D boundary element code in spherical coordinates was
used. The comparison between the 1-D BEM and the MFS in Table 11 is excellent, and
demonstrates the accuracy of the MFS for 3-D problems.

Case 8: Sphere of unit radius (3-D), Dirichlet–Neumann problem.As in Case 7, a
sphere of unit radius, centered at the origin, is considered. The discretization is identical to
that of Case 7. Dirichlet–Neumann boundary conditions are imposed on the sphere. The left
hemisphere is maintained atu= 1.0, and the right hemisphere is insulated (p= 0), as shown
in Fig. 10. For this problem, the solution could not be compared with any case in the liter-
ature, and Table 12 gives the concentration values at the origin for first- and second-order
reactions. For both Cases 7 and 8, the source points were placed on a sphere outside the
domain consideration, and the source radius chosen to obtain convergence. This case illus-
trates the ability of the method to handle three-dimensional problems with mixed boundary
conditions.

TABLE 10

MFS for the Dirichlet–Robin Problem (Case 8)

Kinetics u (origin) (MFS) u (origin) (DRM) Source radius

First-order f = 25c 0.0247 0.02309 1.9
Second-orderf = 25c2 0.2003 0.1986 1.9
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TABLE 11

MFS for a Sphere of Unit Radius, Dirichlet Problem

Kinetics u (origin) (MFS) u (origin) (1-D BEM) Source radius

First-order f = 25c 0.0672 0.0674 1.9
Second-orderf = 25c2 0.2653 0.2667 2.3

TABLE 12

MFS for a Sphere of Unit Radius (D-N)

u (origin) (MFS)
Thiele

parameter (82) First-order f =82u Second-orderf =82u2 Source radius

1.0 0.7204 0.7702 1.9
2.0 0.5632 0.6602 1.9
5.0 0.3335 0.4961 1.9

FIG. 10. Configuration for the 3-D Dirichlet–Neumann problem.



PARTICULAR SOLUTION TREFFTZ METHOD 259

TABLE 13

RMS Error over All Nodes for the Base Case

RMS error (DRM-MFS)

Case Square slab Unit circle

1 ( f = 25u) 0.0037 (2.3%) 0.01728 (1.9%)
1 ( f = 25u2) 0.0032 (2.7%) 0.01687 (2.4%)
2 ( f = 25u) 0.0414 (5.3%) 0.0801 (4.1%)
2 ( f = 25u2) 0.0389 (5.9%) 0.0513 (5.1%)

4. ERROR ANALYSIS AND CONDITIONING OF THE GLOBAL

COLLOCATION MATRIX

4.1. Error Variation with Different Forms of f

To quantify error of the MFS, the RMS difference between theu values obtained by the
MFS and the constant element DRM was calculated over all the nodes. For the 3-D Dirichlet
problem, the RMS error was computed by comparison of the 1-D boundary element solution
to the problem in spherical coordinates by placing the nodes in the 1-D case at the same
radii of the spheres used in the discretization for the MFS.

As one can observe from Tables 13 and 14, the MFS performs relatively well in com-
parison to DRM for all Dirichlet problems in two and three dimensions. The error over all
the nodes was found to be<0.017 in 2-D. However for Dirichlet–Neumann problems the
method did show significant errors in comparison to DRM, particularly in the vicinity of the
D-N singularity with a uniform source distribution. When the sources were distributed as
outlined in Section 2.8, the method performed fairly well in comparison to constant element
DRM. For Cases 3 and 4 the DRM constant element required double the number of nodes
for satisfactory convergence. Higher order elements in DRM would probably outperform
the MFS, but at a higher cost of discretization. Though the magnitude of the error is less
for the second-order reaction, one should note that the profiles are steeper for the first-order
reaction and hence the error magnitudes are slightly larger.

4.2. Variation of Error with Discretization Level

To quantify the error associated with the method with varying amounts of discretization,
Cases 1 and 2 for the unit circle were tested with varying amounts of boundary and interior

TABLE 14

RMS Error over All Nodes

Case Kinetics RMS error (DRM-MFS)

3 f = 25u 9.27× 10−4 (4.3%)
f = 25u2 3.72× 10−3 (4.1%)

4 f = 5u 0.028 (3.4%)
f = 5u2 0.022 (3.2%)

7 f = 5u 0.054 (2.3%)
f = 5u2 0.045 (2.6%)
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TABLE 15

RMS Error for Varying Discretization Levels Case 1 and 2 for the Unit

Circle ( f = 25u)

No. of boundary No. of interior RMS error
Boundary conditions nodes nodes (DRM-MFS)

Dirichlet 8 25 0.041 (4.4%)
8 49 0.023 (2.5%)

16 49 0.0173 (1.9%)
32 73 6.2× 10−3 (0.6%)

Dirichlet–Neumann 8 25 0.096 (4.9%)
8 49 0.087 (4.4%)

16 49 0.080 (4.1%)
32 73 0.061 (3.2%)

discretization, as listed in Table 15. One can see that for the Dirichlet problem, the method
is sufficiently accurate even for relatively small amounts of discretization. However, for
problems with singularities, as in the Dirichlet–Neumann problem of Case 2, the errors are
larger. For all cases, the comparison of the RMS error was made with constant element
DRM with the largest level of discretization used, viz. 32 boundary and 73 interior nodes.
For smaller amounts of discretization, the values ofu at the non-collocation points were
computed from Eq. (14) for comparison purposes. Since the matrix8−1 has already been
evaluated, the interpolating coefficientsαk can be calculated from the converged solution
using Eq. (16).

4.3. Conditioning of the Global Collocation Matrix

It has been reported in the literature [4, 18, 20, 27, 35, 36] that the condition numbers
of the collocation matrix obtained in the MFS are fairly large. To determine the effect of
the conditioning of the global collocation matrix on the convergence of the scheme, the
condition number, maximum, and minimum singular values were calculated for some of
the test cases. These are listed in Tables 16 and 17. As one can see from the Tables 16 and 17,

TABLE 16

Condition Number, Maximum, and Minimum Singular Values of the Global Collocation

Matrix for the Dirichlet and Dirichlet–Neumann Problem in 2-D for the Unit Circle for the

Base Case

Maximum singular Minimum singular
Test case Condition number value value

Dirichlet f = u 2.28× 106 32.98 1.44× 10−5

f = 25u 3.97× 106 57.42 1.44× 10−5

f = u2 2.28× 106 33.11 1.44× 10−5

f = 25u2 3.81× 106 55.01 1.44× 10−5

Dirichlet–Neumann f = u 2.21× 106 32.99 1.50× 10−5

f = 25u 4.61× 106 68.51 1.50× 10−5

f = u2 2.27× 106 33.10 1.50× 10−5

f = 25u2 3.21× 106 47.75 1.50× 10−5
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TABLE 17

Condition Number, Maximum and Minimum Singular Values of the Global Collocation

Matrix Varying Level of Discretization ( f = 25u)

No. of nodes
Condition Maximum Minimum

Boundary conditions Boundary Interior no. singular value singular value

Dirichlet–Neumann 8 25 1.46× 106 53.13 3.63× 10−5

8 49 7.13× 106 119.1 1.54× 10−5

16 49 4.71× 106 68.51 1.50× 10−5

Dirichlet 8 25 2.95× 105 79.88 2.69× 10−4

8 49 8.25× 105 90.88 1.10× 10−4

16 49 3.97× 106 57.42 1.44× 10−5

the condition numbers of the global collocation matrix are reasonable when considering the
fact that all the computations are performed in double precision. The condition number of
the global collocation matrix depends on two factors, viz. the source radius and the Hardy’s
shift parameterc. An increase in either the source radius or the value ofc increases the
condition number. This is illustrated in Fig. 11. An increase in source radius improves the
solution acuuracy at lower source radii but reaches an asymptote within a certain range,
which represents the optimal source radius. Further increasing the source radius increases
the condition number without any improvement or even deterioration in the accuracy. For
example, for the circle in Case 1, the optimal source radius was around 1.6. A similar
argument holds for the shift parameterc. Though the increase inc improves the interpolation
accuracy, the condition number of the8 matrix deteriorates, which in turn results in an

FIG. 11. Variation of condition number with source radius at different values of the shift parameter.
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increase in the condition numbers of the global collocation matrix. Whenc= 0.5, the
condition numbers are at least three orders of magnitude larger than whenc= 0.1. As
outlined in [37], the shift parameter was chosen to be equal to the distance between the
two nearest interpolation nodes. This ensures that the condition numbers are reasonable
without sacrificing any accuracy. For cases when a large number of interpolation points
are necessary, one can resort to domain decomposition techniques as outlined in the next
section for improving the condition numbers.

4.4. Domain Decomposition for Improving Condition Numbers

When one has a large number of interpolation points, the use of radial basis functions
for interpolation of the forcing functionf is not computationally feasible since one has to
invert a dense matrix of sizent× nt wherent is the number of nodes. To reduce the size of
the matrix to be inverted one can resort to domain partitioning methods with the appropriate
transmission conditions at the interface. To illustrate the use of domain partitioning, the
square domain of Case 1 with Dirichlet boundary conditions and8= 1.0 was partitioned
into two equal domains, as shown in Fig. 12. The transmission conditions at the interface are

u1 = u2 on0I

∂u1

∂n
= ∂u2

∂n
on0I ,

(34)

where0I is the interface between the two domains.
The advantage of domain decomposition is that when the subdomains have the same

geometry, the matrices̃G andβ̃ for each subdomain are the same, the only difference being
in the boundary conditions imposed. Hence the collocation matrix can be evaluated without
any additional matrix calculations for every subdomain. Since the problem is non-linear,
an iterative procedure has to be adopted for the interface concentrations/temperature, and

FIG. 12. Domain partitioning for Case 1 (8= 1.0).



PARTICULAR SOLUTION TREFFTZ METHOD 263

the alternating Dirichlet–Neumann method [38] is adopted. Here the concentrations/fluxes
at the common boundary are arbitrarily specified initially and iterated until convergence
is obtained. For this case Dirichlet conditions are specified initially on subdomain 1 and
Neumann conditions are specified on subdomain 2. For each iteration, the gradient and the
concentration are updated as

un+1 = (1− ω)un−1+ ωun, (35)

whereω is a relaxation factor. The values of concentration and flux at the interior points are
same as the single domain case since both domains are identical. The flux values obtained at
the interface are of the order 10−4 in comparison to the exact value of 0.0. The advantage of
the domain decomposition is the reduction in condition number from 7.8× 106 to 1.1× 106

for this particular case. The benefits of domain decomposition will be evident for problems
with steep gradients in certain regions, where a large number of nodes can be used along
with a small shift parameter. The interpolation in the remainder of the domain can be
accomplished using fewer number of interpolation points and a larger value ofc.

5. ADVANTAGES AND DRAWBACKS OF THE METHOD

This version of the Trefftz formulation, introducing the concept of a matrix of particular
solutions, has considerable computational advantage. The matrix of particular solutionsβ

represents the interaction of the solution at each node with others in the domain and depends
only on the location of the collocation points in the domain. The advantage to using theβ

matrix is that it is independent of the forcing functionf and has to be computed only once
for a particular geometry and node location. Once the geometry is fixed and one chooses
the collocation points, the problem can be solved for various forcing functions and imposed
boundary conditions. The matrix of particular solutions is evaluated prior to the iteration
procedure, unlike the formulation using Picard’s method of iteration, where the coefficients
needed to evaluate the particular solution have to be determined at each iteration level.
Our formulation using the matrix of particular solutions exhibits superior convergence,
corresponding to the quadratic convergence rate of the quasi-Newton method employed to
solve the system of equations.

Such a formulation is of immense value in problems in chemical reaction engineering, in
two- and three-phase catalytic systems. One notable example is that of catalytic reactions
on partially wetted catalyst particles in three-phase reactors. In this context, one needs to
evaluate the performance of various catalyst shapes for different kinetic parameters and
different wetting configurations. The governing equation is of the same form for all the
cases, i.e., the diffusion–reaction equation, with the forcing functionf differing for different
kinetics, and the boundary conditions varying for different wetting configurations. Since the
matrix of particular solutions has to be evaluated only once for a particular geometry, the
performance of a particular shape for various kinetic forms can be evaluated at considerable
saving of computational cost.

As outlined in Section 2.6, a significant advantage of the formulation is that the so-
lution algorithm is independent of the dimensionality of the problem. One can use the
same computer program by simply choosing the appropriate fundamental solution and
approximate particular solution in two or three dimensions. This confers a great deal of ver-
satility on the formulation, since one has a method which is both grid free and dimension
independent.
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A drawback of the method of fundamental solutions is that the radius of source placement
for optimal convergence of the scheme is unknown a priori. The method is reported to have
exponential convergence within certain radii of source placement [4, 33, 39]. It was observed
in our computations that within a certain radius of source placement, as one increases the
source radius, convergence was obtained with the same number iterations with improved
accuracy, especially for Dirichlet–Neumann problems. Outside this radius of convergence,
the number of iterations increased with source radius and the method fails to converge for
large source radii. Such behavior can probably be attributed to poor conditioning of the
global collocation matrix for large source radius, as discussed in Section 4.3. However,
there is no sound theoretical basis by which to determine this radius, so one has to resort to
a trial- and-error basis for source placement. For the thermal explosion problem (Section 3,
Case 1), it was observed that the convergence of the scheme to find the critical parameter
δ∗ was dependent to a large extent on the source radius. The scheme failed to converge in
some cases forδ < δ∗, if the source radius was not appropriate.

Another drawback of the formulation is that its convergence is not guaranteed for all
problems having singularities, especially those having a large number of flux specified
nodes, and in very complex geometries. However, this is a problem encountered by all
numerical schemes, and in traditional schemes like finite differences or finite elements,
large amounts of discretization help resolve the problem to some extent. Cases 4, 5, and 8
are examples of problems where convergence could be obtained only for low to moderate
values of the Thiele parameter8. For all these cases, the normal gradients at the junctions
of the Dirichlet and Neumann boundaries are not defined uniquely, and the gradient rises
steeply in the vicinity of the singularity. For example, the variation inp is of the form
1/r 0.5 near a D-N singularity as for the Motz problem. For larger values of8 the gradients
are extremely steep near the boundaries, and the method fails to capture these gradients
accurately. One way to improve the convergence of the method is to use the eigenfunction
expansion outlined in [11]. Here basis functions similar to quarterpoint boundary elements
are used in the vicinity of the singularity. These functions incorporate the correct variation
of the gradient near the singularity and would improve the accuracy of the method for
singular problems. The use of orthogonal collocation is another aspect which needs to be
investigated [40].

6. CONCLUSIONS AND FUTURE DIRECTIONS

The Trefftz method along with method of particular solutions provides an attractive
mesh-free alternative for solving non-linear Poisson problems. The lack of extensive bound-
ary/interior meshing makes the method extremely attractive for two- and three-dimensional
problems in non-regular geometries, where the discretization, along with the large amount
of bookkeeping involved, can contribute significantly to the totalcomputationalcost of the
exercise in other methods. The proposed new computational scheme using the matrix of
particular solutions is shown to possess a number of unique advantages, which makes the
method computationally simple and efficient. Further, we have demonstrated the method for
various non-linear Poisson problems in two and three dimensions with impressive results.
However, in order to make the method more versatile, some refinements are necessary.
Some areas which need future consideration are outlined below.

1.Source point location.This paper provides a heuristic scheme for locating the source
points to obtain superior convergence. As outlined previously, a source point optimization
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as outlined in [8] can be implemented to improve the convergence of the MFS, keeping in
mind the heuristic for source point location. However, a theoretical analysis of the optimal
source location is lacking and needs to be addressed.

2. Region near singularities.The method’s accuracy and convergence for singular
problems are not universal, and a robust method for convergence for a larger class of
problems is needed. The convergence of the method can be improved by using special
basis functions, in the region of the singularity as proposed earlier. Domain decomposition
[41] would provide an attractive means of isolating these singularities to obtain accurate
solutions. By doing so one could use mesh refinement in the regions near the singularity
without the condition numbers becoming prohibitively large. Least square fitting [42] could
also be used to improve the stability of the equations to be solved.

3. Choice of radial basis functions.The convergence and accuracy of the method for
various basis functions for approximation of the particular of the solution is not shown in
this work. The multiquadric was the only basis function used for interpolation. The accuracy
of the interpolation of the particular solution can be improved by augmentation of the radial
basis functions, viz. multiquadrics [43] and thin plate splines [29], which would reduce
the number of the points necessary for interpolation. The location of the discretization
knots for interpolation is another aspect which needs to be investigated. Issues relating to
knot adaptivity for interpolation of regular and near-singular solutions using radial basis
functions have been addressed in [44, 45], and need to be investigated in the context of the
Trefftz method.

Use of other basis functions for interpolation of the forcing function is an area currently
being investigated. Compactly supported radial basis functions [46] provide a means for
making the interpolation matrix8 sparse, so that iterative solvers can be employed for solu-
tion of the resulting equations. For solution of the Poisson equation on a rectangular grid, one
can use Fourier series and FFT methods to approximate the particular solution [31]. Some
preliminary work in this direction using Chebyshev polynomials has been done with encour-
aging results [47]. The advantage of using such a method is that the interpolating coefficients
αk in this case can be determined analytically using the orthogonality properties of the basis
functions. One can thus obtain the matrix of particular solutions without inverting a dense
matrix, thus saving considerable computational labor. Quasi-interpolation [48] is another
technique by which one can construct the interpolant without the matrix inversion procedure.

4. Application to other problems.This paper has primarily addressed solutions to
reaction–diffusion problems. The Trefftz method has been has been used earlier for the
solution of potential and Stokes flow problems [24, 49], which involve only boundary
collocation, and one could extend the scheme for solution of the Navier–Stokes equations
for solutions by approximating the inertial terms using suitable basis functions. This is an
area for future research. One could also resort to Lagrangian methods since the grid-free
nature of the method would obviate some of the problems of regridding and mesh distortion
involved in traditional grid-based Lagrangian methods. The immediate focus of research
should be directed toward improvement of the convergence of the scheme and demonstrate
its ability to handle a wider variety of problems.
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